Physical TheraPT

SB2

Returning to Play for High School Athletes: Part 1

Ever watch your star player go down with a knee injury, see a shoulder pop out during a tackle, or witness an ankle roll on the court? These moments are gut-wrenching for athletes, parents, and coaches alike. But here's the good news: most high school athletes can successfully return to their sport after these common injuries — if they follow the right roadmap for physical recovery.

Let's break down what it takes to get physically cleared for return to play after an ACL tear, shoulder dislocation, or ankle sprain.

 

The ACL Injury: A Marathon, Not a Sprint

An ACL tear is one of the most feared injuries in youth sports, and for good reason. Nearly a quarter of a million ACL injuries occur annually in the US and Canada, with rates in high school athletes reaching 5.5 per 100,000 athlete exposures. But here's what many don't realize: getting back on the field isn't just about healing — it's about meeting specific physical benchmarks.

The minimum timeline is 9 months from surgery, and that's not arbitrary. Your body needs time for the graft to incorporate biologically, and rushing back increases reinjury risk dramatically. In fact, athletes who returned before 9 months had significantly higher rates of reinjury compared to those who waited.

But time alone isn't enough. Athletes must achieve at least 90% limb symmetry index (LSI) for both quadriceps strength and hop testing before getting cleared for competition. This means the injured leg needs to perform at 90% or better compared to the uninjured leg. Athletes who met these criteria had a reinjury rate of just 4.5% within 2 years, compared to 33% in those who didn't meet the criteria.

The recovery follows a structured, mulit-phase approach:

  • Early phase (weeks 0-6): Focus on reducing swelling, restoring range of motion to 0-115 degrees, and achieving 60% quadriceps strength symmetry

  • Intermediate phase (weeks 7-9): Progress to 70% strength symmetry with full, symmetrical range of motion

  • Late phase (weeks 10-16): Reach 75-80% strength symmetry and begin running when you hit 80% and can demonstrate single leg squats, step downs and hops with good mechanics

  • Transitional phase (months 4-6): Introduce jumping, sprinting, and agility drills at 85% strength symmetry

  • Return-to-sport phase (months 6-12): Sport-specific training with final clearance requiring 90% symmetry, no pain or swelling, and adequate confidence levels

Here's the reality check: only 40-55% of athletes return to their pre-injury activity level after ACL reconstruction. Even among highly motivated European professional soccer players with excellent resources, only 65% returned to their previous level. This isn't meant to discourage — it's meant to emphasize the importance of working with a sports physical therapist and following a comprehensive plan.

 

Shoulder Dislocations: High Risk, But Quick Recovery Possible

The shoulder is the most commonly dislocated joint in the body, and it usually dislocates anteriorly (toward the front). For high school athletes, especially those in contact and collision sports, this injury comes with a sobering statistic: recurrence rates can reach up to 90% in active patients younger than 25 years.

But here's where shoulder dislocations differ from ACL injuries: return to play can happen as early as 2-3 weeks after injury for athletes who are pain-free, have symmetrical shoulder range of motion, and can perform sport-specific motions. Some athletes with recurrent dislocations who experience easy relocation, minimal pain, full range of motion, and protective strength may even return the same day.

The treatment approach depends on several factors:

Immediate management:

  • Attempted relocation on the field before muscle spasm develops

  • Neurovascular assessment before and after reduction

  • Immobilization and pain management after successful reduction

  • Post-reduction radiographs after first-time dislocation

Recovery protocol:

  • Sling use for 2-4 weeks for comfort (though current evidence doesn't mandate a specific duration)

  • Graduated rehabilitation focusing on passive and active range of motion

  • Physical therapy addressing joint range of motion, scapular control, rotator cuff strength, and sport-specific conditioning

Surgical considerations: Surgery should be considered for first-time dislocations in active patients under 25 due to the extremely high recurrence rate, or when there are complications like large bony defects.

Interestingly, research on high school athletes shows that 85% of those treated nonoperatively successfully returned to their sport and completed at least one full season without additional injury. Athletes with subluxations (partial dislocations) fared even better, with an 89% success rate compared to 26% for complete dislocations.

 

Ankle Sprains: The Most Common Culprit

Ankle sprains are the most common foot-ankle and sports-related injury for which people seek medical care. Four in every 10 first-time ankle sprains occur during sports participation. The good news? Most athletes bounce back quickly.!

High school athletes have a 75% chance of returning to sport within 3 days after a first-time , Grade I ankle sprain, and a 95% chance within 10 days. In college athletics, 44.4% of athletes returned to play in less than 24 hours. However, more severe Grade II and III sprains involving multiple ligaments can sideline athletes for more than 3 weeks.

The key to successful return involves addressing five critical domains — the PAASS framework:

  • Pain: Both during sport participation and over the last 24 hours

  • Ankle impairments: Range of motion, muscle strength, endurance, and power

  • Athlete perception: Confidence, reassurance, stability, and psychological readiness

  • Sensorimotor control: Proprioception and dynamic postural control/balance

  • Sport/functional performance: Hopping, jumping, agility, sport-specific drills, and ability to complete a full training session

Supervised exercise programs addressing strength, coordination, proprioception, and functional deficits lead to faster return to sports. Evidence also supports the use of compression stockings and anteroposterior ankle joint mobilization for quicker recovery.

General return-to-work and sport guidelines suggest:

  • Return to sedentary work: 2-6 weeks following injury

  • Return to physical occupations and sports: 6-8 weeks

These timelines should be adjusted based on injury severity, rehabilitation response, and specific task requirements. Working with a sports medicine clinician will be key for determining optimal readiness.

 

TOOLS FOR BUILDING CONFIDENCE

Resistance bands, balance pads and boards, and BFR cuffs are a few of the essential tools in rehabilitation. Resistance bands safely build strength, balance pads enhance coordination and stability, and BFR cuffs accelerate recovery through low-load training.

Below are our top 5 recommended products to use as a recovering athlete.

 
 

Click the image to shop on Amazon through our affiliate links and access possible discounts!

 
 

The Bottom Line

Physical clearance for return to play isn't one-size-fits-all. ACL injuries require the longest recovery with the most stringent criteria — minimum 9 months and 90% strength symmetry. Shoulder dislocations can allow quicker return (2-3 weeks) but carry high recurrence risk in young athletes. Ankle sprains typically resolve fastest, with most athletes back within days to weeks.

The common thread? Meeting objective physical criteria matters more than arbitrary timelines. Pain-free movement, symmetrical strength, full range of motion, and sport-specific performance capabilities aren't just checkboxes — they're your best insurance against reinjury.

In Part 2, we'll explore the mental side of return to play — because as we've learned, physical readiness is only half the battle.

 

References

From Rehab to Resilience: The Power of Maintenance Massage

If you’ve ever received massage therapy as part of your physical therapy care, you’ve likely experienced the benefits of recovery massage—decreased soreness, improved mobility, and faster healing. But what happens when you’re out of the acute phase? That’s where maintenance massage comes in—and it’s often the missing piece in staying injury-free and performing at your best.

While recovery massage gets much of the spotlight in the rehab process, maintenance massage is what keeps your system tuned and functioning well long after the initial problem has resolved. Let’s explore the distinct purposes of recovery and maintenance massage, why each matters, and why transitioning from one to the other should be part of your long-term plan.



Recovery Massage: A Tool for Healing

Recovery massage is typically prescribed during or immediately after an injury or intense physical stress. It targets soft tissues that are healing or under high demand. The goals are straightforward: reduce pain, manage inflammation, improve circulation, restore function, and help tissue recover from overload.

Studies consistently show that massage therapy can play a meaningful role in post-injury and post-exercise recovery. A meta-analysis published in Frontiers in Physiology found that massage significantly reduces delayed-onset muscle soreness (DOMS) and improves muscle performance markers such as strength and range of motion after strenuous exercise (Davis et al., 2020). Similarly, massage has been found to be effective in reducing perceived fatigue and supporting muscle recovery without impairing strength or power output (Poppendieck et al., 2016).

Massage also appears to positively impact inflammatory and healing pathways. A cellular-level study by Crane et al. (2012) found that massage downregulated genes associated with inflammation and promoted mitochondrial biogenesis in muscle tissue following exercise. This means massage doesn’t just feel good—it may help tissues repair more efficiently.

In rehab settings, recovery massage often occurs multiple times per week, especially in the early stages of healing. Sessions are more targeted, focusing on restoring mobility and reducing compensation patterns. Once pain and mobility have improved, the frequency of sessions typically decreases, paving the way for a maintenance plan.



Maintenance Massage: Investing in Resilience

In contrast to recovery massage, maintenance massage isn’t about fixing something that’s broken—it’s about keeping systems running smoothly. After you successfully recover from injury, transitioning into maintenance massage is a key strategy to prevent recurrence and improve long-term performance and body awareness.

Maintenance massage supports:

  • Circulation and metabolic exchange in muscles and fascia

  • Muscle tone balance in frequently used or overused areas

  • Joint mobility and tissue pliability

  • Stress reduction and parasympathetic nervous system activation

Although fewer studies focus exclusively on maintenance massage, the benefits are supported by broader research into regular manual therapy. For example, research published in International Journal of Therapeutic Massage & Bodywork found that regular massage over four weeks led to statistically significant decreases in reported musculoskeletal discomfort in healthy adults (Sherman et al., 2014).

Importantly, maintenance massage isn't “less important” just because it's not addressing an acute injury. For athletes or active individuals, maintenance massage becomes part of an ongoing performance strategy—much like strength training or mobility work.

Frequency can vary: for highly active individuals, once every 2–4 weeks is common. The techniques used are often broader and less intense than during the recovery phase, with a focus on tissue health and function rather than symptom relief.





The Transition: From Recovery to Maintenance

One of the most important shifts in the rehabilitation process is knowing when and how to transition from recovery massage to maintenance. That shift usually happens once:

  • Pain has decreased

  • Normal movement patterns have returned

  • The tissue is no longer in an acute inflammatory state

  • Function has improved with activity or return to sport

At this stage, the goal is no longer just healing—it’s sustainability.

Yet many patients disengage from bodywork once the acute phase ends. They “graduate” from PT and stop getting massage until the next injury arises. This stop-start cycle can lead to setbacks or recurrent issues that were preventable with consistent maintenance work.

Massage therapists working in sports and rehab settings understand this arc and can guide the timing and frequency of maintenance sessions. Maintenance massage isn’t about pampering—it’s an active part of an athletic recovery strategy.

 

Tools We Trust for Recovery

While nothing replaces the benefits of hands-on massage, there are a few tools we consistently recommend. Products like massage guns, Chirp wheels, and the VenomGo—combining targeted heat and vibration—can help boost circulation and ease muscle tension between sessions.

 
Buy on amazon
Buy on amazon
 
 
Buy on amazon
 



Conclusion: Recovery Is a Phase—Maintenance Is a Mindset

Recovery massage is the hero during an injury—focused, intensive, and essential. But as tissues heal and performance returns, the work doesn’t stop there. Maintenance massage picks up the baton, helping you maintain the progress you’ve made and avoid returning to square one.

For active individuals—especially those who’ve just completed physical therapy—making maintenance massage a consistent part of your recovery strategy helps build resilience, prevent injuries, and optimize performance. Just as your training evolves with your goals, so too should your approach to bodywork.

In short: Recovery massage gets you out of trouble. Maintenance massage keeps you out of it.

 

References

  • Crane, J. D., Ogborn, D. I., Cupido, C., Melov, S., Hubbard, A., Bourgeois, J. M., ... & Tarnopolsky, M. A. (2012). Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Science Translational Medicine, 4(119), 119ra13. https://doi.org/10.1126/scitranslmed.3002882

  • Davis, H. L., Alabed, S., & Chico, T. J. (2020). Effect of sports massage on performance and recovery: A systematic review and meta-analysis. Frontiers in Physiology, 11, 748. https://doi.org/10.3389/fphys.2020.00748

  • Poppendieck, W., Wegmann, M., Ferrauti, A., Kellmann, M., Pfeiffer, M., & Meyer, T. (2016). Massage and performance recovery: A meta-analytical review. Sports Medicine, 46(2), 183–204. https://doi.org/10.1007/s40279-015-0420-x

  • Sherman, K. J., Cherkin, D. C., Kahn, J., Erro, J. H., Hrbek, A., Deyo, R. A., & Eisenberg, D. M. (2014). A survey of training and practice patterns of massage therapists in two US states. International Journal of Therapeutic Massage & Bodywork, 7(1), 10–17. https://doi.org/10.3822/ijtmb.v7i1.202

Crepitus: The Truth About Noisy Joints

Ever hear a pop when you squat, a crack when you roll your neck, or a grind when you climb stairs? That’s crepitus — the medical term for the noises or sensations that sometimes come from your joints.

Crepitus is common, and in most cases, it’s nothing to worry about. But sometimes, it can signal that your joint mechanics aren’t working as smoothly as they should. Let’s break down why it happens, when it’s normal, and when it may be worth a closer look.


What Exactly Is Crepitus?

Crepitus refers to the popping, cracking, grating, or crunching sounds (or sensations) that occur during joint movement. It can show up in many areas of the body, including the knees, shoulders, hips, spine, and even the jaw.

It’s not a condition by itself, but more of a sign that something is happening in or around the joint. A lot of times, that “something” is completely benign. Other times, it’s a clue that the joint is under stress (Drum et al., 2023).


Why Do Joints Make Noise?

There are several reasons joints produce crepitus, most of which are harmless:

  • Gas bubble formation (cavitation): Joints are lubricated by synovial fluid. When pressure inside the joint changes quickly, gas can form or collapse in the fluid, creating a distinct popping sound (Kawchuk et al., 2015; Fryer et al., 2017).

  • Tendons or ligaments snapping over bone: Soft tissues sometimes shift slightly during movement and then snap back into place, creating a click.

  • Surface changes in cartilage: If the smooth joint surfaces become uneven (such as in arthritis), movement can cause grinding or crackling noises.

  • Internal tissue catching: Soft tissue folds inside the joint, such as plica or meniscal edges, can occasionally cause popping or clicking (Drum et al., 2023).


How Common Is Crepitus?

You’re not alone if your joints make noise — crepitus is widespread, even in healthy people.

  • About 41% of knees in the general population show crepitus.

  • Even among people with no knee pain, roughly one-third still experience it.

  • In individuals with osteoarthritis, the numbers are higher — up to 81% report crepitus (Couch et al., 2025).

The takeaway? Joint noise is very common, and by itself, it doesn’t necessarily mean damage.


When Crepitus Is Harmless

Most of the time, crepitus is simply a mechanical quirk of how your joints move. It’s usually not a concern if:

  • The noise occurs without pain.

  • There’s no swelling, stiffness, or loss of motion.

  • It hasn’t been getting worse over time.

In these cases, there’s no reason to avoid movement — in fact, staying active can keep your joints healthier.


When Crepitus Might Signal a Problem

Crepitus deserves more attention when it’s paired with other symptoms. You may want to consult a physical therapist or physician if you notice:

  • Pain with movement or weight-bearing

  • Swelling, warmth, or stiffness in the joint

  • Locking, catching, or instability

  • Persistent or worsening grinding

  • Loss of function or activity limitations

In some cases, more intense crepitus has been linked with weaker surrounding muscles (like the quadriceps in the knee). This muscle imbalance can place more stress on the joint, making symptoms worse (Jakovacz et al., 2024).

Importantly, while crepitus is more common in people with osteoarthritis, studies show that crepitus alone does not reliably predict disease progression or need for joint replacement (Pazzinatto et al., 2018).


What You Can Do About Crepitus

If your crepitus is painless:

  • Keep moving. Regular activity nourishes cartilage and prevents stiffness.

  • Strengthen muscles. For example, strong quadriceps and hamstrings help reduce stress on the knee.

  • Stretch and mobilize. Increased flexibility can improve tendon and ligament function.


Simple Tools to Keep Your Joints Moving Smoothly

Crepitus can often be eased with tools that promote muscle relaxation and joint mobility. The Hypervolt massage gun with its heated attachment helps improve circulation, reduce muscle tension, and warm up tissues around the joints. Pairing it with gentle movements using an exercise ball encourages controlled mobility and improved joint function.

buy on amazon
Buy on Amazon
 
 
Buy on Amazon
 
 

If your crepitus is painful or comes with swelling or dysfunction:

  • Check in with a physical therapist. They can identify whether the crepitus is harmless or potentially linked to a condition like arthritis, tendon overload, or a fibrocartilage injury (meniscus, labrum).

  • Follow a guided plan. Targeted exercises, joint protection strategies, and activity modifications can help reduce pain and restore confidence in movement.


Bottom Line

Joint noise by itself, even if it sounds dramatic, is usually nothing to worry about. But if crepitus shows up alongside pain, swelling, or loss of function, it’s your body’s way of telling you to pay closer attention.

The good news? Most causes of crepitus respond well to exercise, physical therapy, and healthy movement habits. So the next time your joints crack, remember: noise without pain is normal; noise with pain deserves attention.


References

  • Couch, T. A., Hall, M., Hussain, S. M., Teichtahl, A. J., Wluka, A. E., & Wang, Y. (2025). Knee crepitus: A systematic review of prevalence, incidence, and associations with knee osteoarthritis. Osteoarthritis and Cartilage Open, 7(1), 100471.

  • Drum, E. E., Jauregui, J. J., Probasco, S. K., et al. (2023). Knee crepitus: Current evidence and clinical relevance. Musculoskeletal Care, 21(3), 442–449.

  • Fryer, G., Pearce, A. J., & Herbert, J. J. (2017). Cavitation onset in the metacarpophalangeal joint: A physiological explanation of joint cracking. PLoS ONE, 12(4), e0174190.

  • Jakovacz, N., Mészáros, Z., & Farkas, J. (2024). Relationship between knee crepitus intensity and quadriceps muscle thickness. Manual Therapy, 66, 107102.

  • Kawchuk, G. N., Fryer, J., Jaremko, J. L., Zeng, H., Rowe, L., & Thompson, R. (2015). Real-time visualization of joint cavitation. PLoS ONE, 10(4), e0119470.

  • Pazzinatto, M. F., de Oliveira Silva, D., Azevedo, F. M., & Barton, C. J. (2018). Association between crepitus and progression of knee osteoarthritis: A longitudinal cohort study. Arthritis Care & Research, 70(3), 420–427.

Massage Vs. Physical Therapy: Choosing The Right Path

If you've ever pulled a muscle, twisted your knee, or found yourself dealing with persistent aches and pains, you might have wondered: Should I go see a massage therapist or book an appointment with a physical therapist?

It’s a common question—and a good one. While both massage and physical therapy (PT) are both key for treating pain and promoting recovery, they also serve different purposes and are often most effective when used together.

Let’s explore how each one works, when to choose one over the other, and why the smartest choice might be both.

Massage Therapy: A First Line of Care

Massage therapy is often a great place to start after an injury or when you're experiencing pain, tension, or swelling. Think of it as the “first responder” for soft tissue issues—like muscle strains, tension headaches, or post-exercise soreness.

Massage therapy works by:

  • Reducing pain and muscle guarding through stimulation of pressure receptors and pain-modulating pathways (Moraska et al., 2021).

  • Decreasing swelling by improving lymphatic flow and local circulation.

  • Increasing blood flow to promote tissue healing and deliver nutrients to damaged areas.

  • Improving tissue quality, including flexibility and pliability of muscles and fascia.

This makes massage especially useful in the acute phase of healing—when inflammation is high, movement is painful, and the goal is simply to help the body settle and start repairing itself.

In many ways, massage prepares the body for what comes next: more active rehabilitation.

Massage also activates the parasympathetic nervous system, promoting relaxation and reducing the body's stress response—an often-overlooked but critical part of healing (Field, 2014). This calming effect can make it easier for patients to move, breathe, and rest, all of which are essential for recovery.

Physical Therapy: Building Long-Term Resilience

While massage is excellent for reducing symptoms, physical therapy focuses on correcting the underlying root causes of pain and dysfunction. Working with a PT becomes especially important when you’re ready to restore movement, rebuild strength, and prevent the problem from coming back.

Physical therapists are trained to:

  • Perform functional and sport-specific movement analysis to identify dysfunctions or imbalances.

  • Restore mobility and function through manual therapy to optimize biomechanics and movement.

  • Strengthen weak or inhibited muscles that may be contributing to pain or poor alignment and limited function.

  • Improve proprioception, which is your body's awareness of where it is in space—a crucial skill after injury or surgery (Han et al., 2016).

  • Develop and implement customized exercise plans to retrain the body and improve athletic capacity.

While physical therapists utilize manual therapy techniques and modalities to treat swelling and pain, their primary goal is long-term functional recovery and return to sport. That means helping you move better—not just feel better.

PT helps you build the strength and coordination to stay healthy, not just get healthy.

For example, if you’ve sprained your ankle, massage may help with the initial swelling and stiffness. But PT will help you restore your balance, retrain your gait, and strengthen your ankle to reduce the chance of reinjury.

Better Together: How Massage and PT Complement Each Other

Rather than choosing between massage and physical therapy, the real secret is knowing how they work in tandem.

Massage can:

  • Relax tight muscles before a PT session, allowing for better movement.

  • Help reduce soreness and inflammation after exercise or manual therapy.

  • Improve tissue extensibility, making stretching and strengthening more effective.

Physical therapy can:

  • Address the biomechanical issues causing pain or tightness in the first place.

  • Reinforce the gains made through massage with strengthening and motor control exercises.

  • Guide patients through functional movements to improve long-term outcomes.

Research supports this complementary approach. A 2016 study found that combining manual therapy (including massage techniques) with exercise led to better outcomes for low back pain compared to either intervention alone (Wegner et al., 2013). In other words, you get more value from both when they’re used together.

Final Thoughts: Two Tools, One Goal—Your Recovery

When you're in pain or recovering from an injury, it’s easy to look for one solution. But healing is rarely a straight line—and no single approach has all the answers.

Massage therapy and physical therapy each bring unique strengths to the table. Massage helps soothe the body, reduce pain, and restore tissue health. Physical therapy helps correct movement, build strength, and prevent future problems.

Used together, they offer a more complete path to healing. So if you’re wondering whether to book that massage or start PT, the answer might be: both—at the right time, in the right order, and with the right goals.

References

  • Field, T. (2014). Massage therapy research review. Complementary Therapies in Clinical Practice, 20(4), 224–229.

  • Han, J., Waddington, G., Adams, R., Anson, J., & Liu, Y. (2016). Assessing proprioception: A critical review of methods. Journal of Sport and Health Science, 5(1), 80–90.

  • Moraska, A. F., Chandler, C., Edmiston-Schaetzel, A., Franklin, G., Calenda, E. L., & Rice, K. (2021). Massage therapy for pain and function in patients with chronic low back pain: A systematic review and meta-analysis. Pain Medicine, 22(4), 842–854.

  • Wegner, A., Widyahening, I. S., van Tulder, M. W., Blomberg, S., de Vet, H. C. W., & Brønfort, G. (2013). Traction for low-back pain with or without sciatica. Cochrane Database of Systematic Reviews, (8).

The Science of Stretching

Stretching has been a go-to practice for athletes, fitness enthusiasts, and physical therapy patients alike. But what’s really happening inside your body when you stretch? More importantly, is stretching as beneficial as we’ve been told?

For years, the idea was simple: stretch to improve flexibility, prevent injuries, and enhance performance. However, modern research paints a more nuanced picture. While stretching does have benefits, how, when, and why you stretch matters. In this post, we’ll explore the science behind stretching, the differences between dynamic and static stretching, and how to make your stretching routine more effective.

What Happens at the Cellular Level?

When you stretch, your muscles don’t just "loosen up"—a series of complex physiological reactions occur at the cellular level.

1. Muscle Fibers and Fascia Adapt

Muscle fibers (sarcomeres) temporarily elongate during stretching, but lasting flexibility gains occur when connective tissues, like fascia, gradually adapt over time. This aligns with Davis’s law, which states that soft tissues remodel in response to consistent mechanical stress. Research also shows that fascia is dynamic and can adapt to mechanical forces, influencing long-term flexibility (Schleip et al., 2019).

2. Neuromuscular Inhibition (Stretch Reflex)

The stretch reflex protects muscles from overstretching by triggering a contraction when a muscle is rapidly lengthened. However, consistent stretching can reduce this reflex's excitability, allowing for greater flexibility. A study found that repeated stretching, especially when muscles remain relaxed, can attenuate stretch reflex activity, supporting the idea that long-term stretching helps muscles tolerate greater lengthening without resistance (Ogawa et al., 2022).

3. Increased Blood Flow and Tissue Elasticity

Stretching improves blood circulation, which brings oxygen and nutrients to the muscles. This can enhance recovery, reduce muscle stiffness, and even contribute to long-term joint health.

Has Science Proven That Stretching is Beneficial?

Yes and no. While stretching can improve flexibility, studies show that static stretching before exercise doesn’t significantly reduce injury risk or enhance performance (Behm et al., 2016). However, dynamic stretching and long-term flexibility training have been shown to improve range of motion, recovery, and even reduce chronic pain when done correctly (Oppert & Babault, 2018).

Dynamic vs. Static Stretching: How to Use Each Effectively

Not all stretching is created equal. The type of stretching you do should match your goal:

Dynamic Stretching:
Best Before Activity

Dynamic stretching involves active movements that take your joints through their full range of motion. Instead of holding a stretch, you move fluidly through it—mimicking the movements you’re about to perform.

Benefits:

  • Increases blood flow and muscle temperature

  • Activates the nervous system for movement

  • Improves range of motion without reducing muscle power

EXAMPLES:

  • Leg Swings – Swing your leg forward and backward to activate hip flexors and hamstrings.

  • Lunges with a Twist – Engage core, hips, and spine before running or sports.

  • Arm Circles – Increase mobility in the shoulders before upper-body activities.

Bottom Line: Use dynamic stretching before workouts to prepare your muscles for activity without reducing power output.

Static Stretching:
Best After Activity

Static stretching involves holding a position for an extended period (15–60 seconds), allowing muscles to relax and lengthen.

Benefits:

  • Improves long-term flexibility

  • Helps muscles recover and reduces post-exercise stiffness

  • Promotes relaxation and stress relief

EXAMPLES:

  • Hamstring Stretch – While lying on your back, use a strap to anchor around your foot and pull your leg up towards the ceiling, feeling a stretch in the back of your leg

  • Chest Opener – While sitting, clasp hands behind your head and open your chest to counteract hunching, opening your elbows out and away from you

  • Quad Stretch – While standing, grab one ankle behind you to stretch the front of your thigh.

Bottom Line: Use static stretching after workouts or as part of a flexibility routine to improve long-term mobility.

When to Stretch
(And When Not To)

When You Should Stretch:

Before a workout? – Yes, but only dynamic stretching.
After a workout? – Yes, static stretching can aid in recovery.
To improve flexibility? – Yes, but hold stretches for 15-60 seconds & perform them regularly.
To address muscle imbalances? – Yes, targeted stretching can help correct asymmetries.

When You Should Avoid Stretching:

When muscles are cold – Jumping into static stretching without warming up can lead to injury.
If you're experiencing sharp pain – Stretching shouldn’t cause pain; if it does, you may have an underlying issue.
If you suspect a sprain or strain – these types of injuries involve the tearing of ligaments or muscles/tendons, respectively (sometimes these tears are minimal). If there’s any torn tissue, stretching is not advised
When you have a history of dislocation or subluxation – joints that are likely to pop out of place are not suited for stretching

TOOLS FOR OPTIMIZING YOUR STRETCHING ROUTINE

A stretching strap promotes better alignment and controlled muscle lengthening, while a yoga mat provides joint support and stability—both enhancing safety and effectiveness through improved biomechanics.

BUY ON AMAZON
BUY ON AMAZON
 

Addressing Muscle Imbalances: Focusing on the Tighter Side

If you notice one side of your body is significantly tighter than the other, this could indicate:

  • An imbalance in muscle strength

  • A previous injury that caused compensatory patterns

  • Postural habits affecting mobility

How to Fix It:

  • During warmups, spend extra time dynamically stretching the tighter side.

  • During cooldowns, hold static stretches longer on the less flexible side.

  • If asymmetry persists, consider working with a physical therapist to address underlying issues.

Conclusion: Smarter Stretching for Better Movement

Stretching isn’t just about flexibility—it’s about training your nervous system and connective tissues to function optimally. Keep in mind that your body needs time to adapt to a new stretching routine, so start slow and don’t stretch more than once a day.

Here’s what to remember:

Dynamic stretching before workouts prepares muscles for movement.
Static stretching after workouts improves flexibility and recovery.
Stretching should be intentional—focusing on imbalances and avoiding overdoing it.
Flexibility is a long-term process—consistency is key.

Rather than mindlessly holding stretches, use stretching as a tool to enhance movement, prevent injury, and improve overall mobility. If you’re struggling with flexibility issues, a structured stretching routine (or a visit to a physical therapist) could make all the difference.

References

  • Schleip, R., Gabbiani, G., Wilke, J., Naylor, I. L., Hinz, B., Zorn, A., Jäger, H., & Klingler, W. (2019). Fascia is able to actively contract and may thereby influence musculoskeletal dynamics: A histochemical and mechanographic investigation. Frontiers in Physiology, 10, 336.

  • Ogawa, Y., Hasegawa, N., Nakazawa, K., Akai, M., & Murayama, M. (2022). Effect of repeated fast stretches on stretch reflex excitability in individuals post-stroke. Frontiers in Neurology, 13, 764650.

  • Behm, D. G., Blazevich, A. J., Kay, A. D., & McHugh, M. (2016). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Applied Physiology, Nutrition, and Metabolism, 41(1), 1–11.

  • Opplert, J., & Babault, N. (2018). Acute effects of dynamic stretching on muscle flexibility and performance: An analysis of the current literature. Sports Medicine, 48(2), 299–325.