Physical TheraPT

Research-Backed Recovery

Water Wins

You've probably heard you need to drink lots of water after a massage. But is that really necessary? Let's look at what the science actually says about hydration, massage, and athletic performance.

Why Water Matters for Athletes

Water makes up about 60% of your body weight and plays essential roles in nutrient transport, temperature regulation, and joint lubrication. For athletes and active individuals, staying hydrated is particularly important because it affects how your muscles and tissues function.[1]

When you're dehydrated, your tissues become stiffer and less flexible. Research shows that dehydration increases the force needed to compress soft tissues and reduces tissue thickness. Even mild dehydration (losing just 3% of your body weight in fluids) can decrease muscle endurance by about 8% and reduce strength by about 5%.[2][3]

Dehydration also creates extra stress on your muscles at the cellular level. Studies show that exercising while dehydrated increases oxidative stress and can impair muscle protein metabolism. Over time, severe dehydration may even slow down muscle recovery and glycogen (energy) storage after workouts.[4][5]

 

The Truth About Massage and "Toxins"

Here's the reality: the idea that massage releases toxins requiring extra water is a myth. There's no scientific evidence supporting this claim.[6][7][8]

Your body already has highly effective systems for removing waste products—your liver, kidneys, and lymphatic system handle this 24/7. Massage doesn't create a sudden release of toxins that needs to be flushed out with water.

What about lactic acid? This is another common misconception. Lactic acid doesn't cause muscle soreness, and it's cleared from your muscles within 30-60 minutes after exercise—long before you'd typically get a massage. Massage doesn't remove lactic acid, and you don't need extra water to flush it out.[9][10][11]

That said, massage does produce real physiological effects. Studies show it can temporarily reduce cortisol (a stress hormone), lower heart rate, and cause modest changes in inflammatory markers. But none of these effects require you to drink extra water.[12][13][14]

 

How Much Water Do You Actually Need?

For general health, aim for about 40-45 mL per kilogram of body weight per day from all beverages and food combined. For a 150-pound (68 kg) person, that's roughly 2.7-3 liters (90-100 ounces) total per day.[15][16]

If you're training hard or sweating heavily, you'll need more. A good rule of thumb: replace about 1.5 times the fluid you lose during exercise. For example, if you lose 1 pound during a workout, drink about 24 ounces of fluid.[17]

Simple ways to monitor your hydration:

  • Check your urine color—pale yellow is ideal

  • Pay attention to thirst during moderate activity

  • Weigh yourself before and after intense workouts to estimate fluid loss

  • Add 0.5-1 liter of water after high-sweat sessions


Important: Don't overdo it. Drinking excessive plain water during prolonged exercise can dilute your sodium levels and cause problems.

 

The Bottom Line

Hydration is important for athletic performance and recovery—but not because of massage. Staying well-hydrated helps maintain tissue flexibility, supports muscle function, and enables efficient recovery from training.[2][4][3]

After your next massage, feel free to drink water if you're thirsty. But don't feel pressured to chug extra water based on myths about toxins or lactic acid. Instead, focus on consistent daily hydration as part of your overall training and recovery strategy.

The real reason to stay hydrated isn't about flushing anything out—it's about keeping your body functioning at its best.

 

References

  1. Water as an Essential Nutrient: The Physiological Basis of Hydration. Jéquier E, Constant F. European Journal of Clinical Nutrition. 2010;64(2):115-23. doi:10.1038/ejcn.2009.111.

  2. Investigating the Impact of Dehydration and Hydration on in-Vivo Hip Soft Tissue Biomechanics. Khorami F, Foroutan Y, Sparrey CJ. PloS One. 2025;20(8):e0328054. doi:10.1371/journal.pone.0328054.

  3. Effect of Hypohydration on Muscle Endurance, Strength, Anaerobic Power and Capacity and Vertical Jumping Ability: A Meta-Analysis. Savoie FA, Kenefick RW, Ely BR, Cheuvront SN, Goulet ED. Sports Medicine (Auckland, N.Z.). 2015;45(8):1207-27. doi:10.1007/s40279-015-0349-0.

  4. Passive Dehydration Increases Oxidative Stress and mTOR Signalling Pathway Activation in Young Men Following Resistance Exercise. Luk HY, Jiwan NC, Appell CR, et al. The Journal of Physiology. 2025;603(12):3551-3570. doi:10.1113/JP288434.

  5. Hydration, Hyperthermia, Glycogen, and Recovery: Crucial Factors in Exercise Performance-a Systematic Review and Meta-Analysis. López-Torres O, Rodríguez-Longobardo C, Escribano-Tabernero R, Fernández-Elías VE. Nutrients. 2023;15(20):4442. doi:10.3390/nu15204442.

  6. Side-Effects of Massage Therapy: A Cross-Sectional Study of 100 Clients. Cambron JA, Dexheimer J, Coe P, Swenson R. Journal of Alternative and Complementary Medicine (New York, N.Y.). 2007;13(8):793-6. doi:10.1089/acm.2006.6401.

  7. The Safety of Massage Therapy. Ernst E. Rheumatology (Oxford, England). 2003;42(9):1101-6. doi:10.1093/rheumatology/keg306.

  8. The Mechanisms of Massage and Effects on Performance, Muscle Recovery and Injury Prevention. Weerapong P, Hume PA, Kolt GS. Sports Medicine (Auckland, N.Z.). 2005;35(3):235-56. doi:10.2165/00007256-200535030-00004.

  9. Delayed Onset Muscle Soreness : Treatment Strategies and Performance Factors. Cheung K, Hume P, Maxwell L. Sports Medicine (Auckland, N.Z.). 2003;33(2):145-64. doi:10.2165/00007256-200333020-00005.

  10. Delayed Muscle Soreness: A Review. Francis K. The Journal of Orthopaedic and Sports Physical Therapy. 1983;5(1):10-3. doi:10.2519/jospt.1983.5.1.10.

  11. Lactate: Friend or Foe. Hall MM, Rajasekaran S, Thomsen TW, Peterson AR. PM & R : The Journal of Injury, Function, and Rehabilitation. 2016;8(3 Suppl):S8-S15. doi:10.1016/j.pmrj.2015.10.018.

  12. Physiological Adjustments to Stress Measures Following Massage Therapy: A Review of the Literature. Moraska A, Pollini RA, Boulanger K, Brooks MZ, Teitlebaum L. Evidence-Based Complementary and Alternative Medicine : eCAM. 2010;7(4):409-18. doi:10.1093/ecam/nen029.

  13. Influence of Classical Massage on Biochemical Markers of Oxidative Stress in Humans: Pilot Study. Skubisz Z, Kupczyk D, Goch A, et al. BioMed Research International. 2021;2021:6647250. doi:10.1155/2021/6647250.

  14. Effect of Single Session of Swedish Massage on Circulating Levels of Interleukin-6 and Insulin-Like Growth Factor 1. Stenbäck V, Lehtonen I, Mäkelä KA, et al. International Journal of Molecular Sciences. 2024;25(17):9135. doi:10.3390/ijms25179135.

  15. Hydration for Health Hypothesis: A Narrative Review of Supporting Evidence. Perrier ET, Armstrong LE, Bottin JH, et al. European Journal of Nutrition. 2021;60(3):1167-1180. doi:10.1007/s00394-020-02296-z.

  16. Hydration and Health at Ages 40-70 Years in Salzburg Austria Is Associated With a Median Total Water Intake Over 40 mL/kg Including at Least 1 L/D Plain Drinking Water. Stookey JD, Langthaler PB, Felder TK, et al. Frontiers in Public Health. 2025;13:1668981. doi:10.3389/fpubh.2025.1668981.

  17. Selected Issues for Nutrition and the Athlete: A Team Physician Consensus Statement. Medicine and Science in Sports and Exercise. 2013;45(12):2378-86. doi:10.1249/MSS.0000000000000174.

When Is an Athlete Actually Ready?

Ever watch an athlete pass every physical test with flying colors but still hesitate when it's time to compete? Or see someone who's technically cleared but just doesn't look like themselves on the field? That's the psychological side of injury recovery — and it's just as important as the physical side.

Here's what many don't realize: an athlete who returns to sport when not psychologically ready may be at increased risk for mental health crisis, physical injury, or both. Let's break down the mental obstacles high school athletes face after ACL injuries, shoulder dislocations, and ankle sprains — and what actually helps them overcome these barriers.

 

The Mind-Body Connection: Why Psychology Matters

Psychological readiness is the critical missing piece in return-to-sport decisions. After ACL reconstruction, mental health scores directly correlate with successful return to sport. In fact, a recent analysis found that psychological readiness was the most effective predictor of return-to-sport success, with an effect size of 1.55 — outperforming physical tests like hop tests and limb symmetry indices.

The numbers tell a sobering story. Despite technical surgical successes and well-designed rehabilitation programs, many athletes never reach their preinjury athletic performance level, and some never return to their primary sport at all. This gap between physical capability and actual return suggests that factors beyond muscle strength and joint stability are at play.

 

The Psychological Obstacles: What Athletes Actually Face

Fear is the biggest mental barrier — specifically, fear of reinjury and fear of movement (kinesiophobia). Research on teens and young adults after ACL reconstruction found that each one-point increase in kinesiophobia was associated with a 28% higher likelihood of reporting unacceptable psychological readiness. Greater psychological readiness was strongly associated with lower kinesiophobia in both teens and adults.

The emotional landscape of injury recovery includes several warning signs that indicate poor adjustment:

  • Unreasonable fear of reinjury

  • Loss of athletic identity

  • Continued denial of injury severity

  • General impatience and irritability

  • Rapid mood swings

  • Withdrawal from teammates and support networks

  • Extreme guilt about letting the team down

  • Dwelling on minor physical complaints

  • Obsession with the question of when they can return

Nearly half of young athletes score below acceptable thresholds for psychological readiness after ACL reconstruction, highlighting just how common these struggles are.

 

What Psychological Readiness Actually Looks Like

An athlete who is psychologically ready to play has three key characteristics: realistic expectations of performance, high self-efficacy, and low anxiety. But here's an interesting finding: perceived physical competence matters more than actual physical competence when it comes to psychological readiness.

In a study of young athletes after ACL reconstruction, meeting criteria for perceived physical competence was associated with higher psychological readiness to return to sport, while meeting actual physical competence criteria showed no association with psychological response. This suggests that how athletes feel about their abilities may be more important than objective measurements alone.

For adolescent athletes specifically, the emotional response appears more influential than confidence in performance or risk appraisal. ACL-RSI scores increased significantly between 6 and 12 months post-surgery (from 55 to 71), and the emotions factor had better predictive ability for return to play than the confidence and risk appraisal factors.

 

Evidence-Based Assessment Tools

Several validated screening tools can help identify athletes who need psychological support:

Injury-specific tools:

  • ACL-Return to Sport after Injury scale (ACL-RSI): The gold standard for assessing psychological readiness after ACL reconstruction, with a cutoff score of 77 distinguishing acceptable from unacceptable readiness

  • Injury-Psychological Readiness to Return to Sport questionnaire (I-PRRS): Psychometric test specifically designed to assess psychological readiness of injured athletes

  • Tampa Scale of Kinesiophobia (TSK-11): Measures pain-related fear of movement

  • Reinjury Anxiety Inventory (RIAI): Specifically measures reinjury anxiety

General mental health screening:

  • Patient Health Questionnaire-9 (PHQ-9): Assesses presence of depression

  • Generalized Anxiety Disorder-7 (GAD-7): Assesses anxiety symptoms

  • Athlete Sleep Screening Questionnaire (ASSQ): Evaluates sleep disturbance

  • Sport Mental Health Assessment Tool 1 (SMHAT-1): Developed by the International Olympic Committee for comprehensive mental health assessment in athletes

Serial assessments using these tools offer a continuing profile of the athlete's psychological progression throughout recovery.

 

What Actually Helps: Evidence-Based Interventions

Three psychological elements are most important for positive rehabilitation and return to preinjury level of play: autonomy, competence, and relatedness (from self-determination theory).

Specific strategies that support positive return to sport experiences include:

  1. Reducing reinjury anxieties using modeling techniques — connecting athletes with others who have successfully recovered from similar injuries

  2. Building confidence through functional testing and goal setting — establishing both short- and long-term recovery goals

  3. Providing social support — keeping athletes involved with their team, teammates, and friends throughout recovery

  4. Reducing stressors related to premature return — ensuring athletes understand realistic timelines and expectations

  5. Fostering athlete autonomy — involving athletes in decision-making about their recovery

  6. Teaching specific stress coping skills:

    • Positive self-talk and cognitive restructuring

    • Relaxation techniques (meditation, deep breathing, progressive muscle relaxation)

    • Imagery and visualization

    • Goal setting

Research shows that psychological strategies like goal setting, positive self-statements, cognitive restructuring, and imagery/visualization are associated with faster recovery.

 

Building Trust and Addressing Misinformation

The foundation of psychological support starts with the healthcare team. Critical factors include:

  • Building trust and rapport — listening not only to make a medical diagnosis but also to assess and monitor emotional state

  • Educating the athlete about the injury — providing clear explanations in terms they can understand, with opportunities to ask questions

  • Identifying misinformation — athletes may obtain inaccurate information from parents, coaches, teammates, or the internet that contributes to confusion and emotional upheaval

  • Preparing parents, coaches, and other stakeholders — with the athlete's permission, educating support networks that injury management is individualized

  • Assessing the social support network — understanding who the athlete can rely on and their perception of that support

 

When to Refer to Mental Health Professionals

Athletes with problematic emotional reactions should be referred to licensed mental health professionals, preferably those with experience working with athletes. Early intervention and referral to the mental health network is important.

The American College of Sports Medicine recommends integrating sports psychologists and other mental health professionals into the athletic care network and coordinating referrals for mental health services as needed.

 

The Unique Challenges for High School Athletes

Adolescent athletes face specific psychological challenges. Adults were twice as likely as teens to report unacceptable psychological readiness after ACL reconstruction, suggesting that younger athletes may have different psychological responses or support needs.

Additionally, athletes with moderate preinjury adversity experienced less negative psychological responses compared to those with low or high preinjury adversity, suggesting that some prior experience with challenges may build resilience.

 

TOOLS FOR BUILDING CONFIDENCE

Resistance bands, balance pads and boards, and BFR cuffs are a few of the essential tools in rehabilitation. Resistance bands safely build strength, balance pads enhance coordination and stability, and BFR cuffs accelerate recovery through low-load training.

Below are our top 5 recommended products to use as a recovering athlete.

 
 

Click the image to shop on Amazon through our affiliate links and access possible discounts!

 
 

The Bottom Line

Physical clearance is only half the battle. Psychological readiness should be evaluated and incorporated into return-to-sport decision-making for all injured high school athletes, not just those recovering from ACL injuries.

The good news? High levels of optimism and self-efficacy and lower levels of depression and stress are associated with improved recovery from injury. Athletes who maintain optimism, believe in their ability to recover, and receive strong social support while managing stress and depressive symptoms are more likely to complete rehabilitation successfully, return to sport faster, and achieve better functional outcomes.

The key is recognizing that physical healing and psychological readiness must progress together — and when they do, high school athletes have the best chance of not just returning to their sport, but thriving in it.

 

References

Getting Back Out There, The Right Way

Ever watch your star player go down with a knee injury, see a shoulder pop out during a tackle, or witness an ankle roll on the court? These moments are gut-wrenching for athletes, parents, and coaches alike. But here's the good news: most high school athletes can successfully return to their sport after these common injuries — if they follow the right roadmap for physical recovery.

Let's break down what it takes to get physically cleared for return to play after an ACL tear, shoulder dislocation, or ankle sprain.

 

The ACL Injury: A Marathon, Not a Sprint

An ACL tear is one of the most feared injuries in youth sports, and for good reason. Nearly a quarter of a million ACL injuries occur annually in the US and Canada, with rates in high school athletes reaching 5.5 per 100,000 athlete exposures. But here's what many don't realize: getting back on the field isn't just about healing — it's about meeting specific physical benchmarks.

The minimum timeline is 9 months from surgery, and that's not arbitrary. Your body needs time for the graft to incorporate biologically, and rushing back increases reinjury risk dramatically. In fact, athletes who returned before 9 months had significantly higher rates of reinjury compared to those who waited.

But time alone isn't enough. Athletes must achieve at least 90% limb symmetry index (LSI) for both quadriceps strength and hop testing before getting cleared for competition. This means the injured leg needs to perform at 90% or better compared to the uninjured leg. Athletes who met these criteria had a reinjury rate of just 4.5% within 2 years, compared to 33% in those who didn't meet the criteria.

The recovery follows a structured, mulit-phase approach:

  • Early phase (weeks 0-6): Focus on reducing swelling, restoring range of motion to 0-115 degrees, and achieving 60% quadriceps strength symmetry

  • Intermediate phase (weeks 7-9): Progress to 70% strength symmetry with full, symmetrical range of motion

  • Late phase (weeks 10-16): Reach 75-80% strength symmetry and begin running when you hit 80% and can demonstrate single leg squats, step downs and hops with good mechanics

  • Transitional phase (months 4-6): Introduce jumping, sprinting, and agility drills at 85% strength symmetry

  • Return-to-sport phase (months 6-12): Sport-specific training with final clearance requiring 90% symmetry, no pain or swelling, and adequate confidence levels

Here's the reality check: only 40-55% of athletes return to their pre-injury activity level after ACL reconstruction. Even among highly motivated European professional soccer players with excellent resources, only 65% returned to their previous level. This isn't meant to discourage — it's meant to emphasize the importance of working with a sports physical therapist and following a comprehensive plan.

 

Shoulder Dislocations: High Risk, But Quick Recovery Possible

The shoulder is the most commonly dislocated joint in the body, and it usually dislocates anteriorly (toward the front). For high school athletes, especially those in contact and collision sports, this injury comes with a sobering statistic: recurrence rates can reach up to 90% in active patients younger than 25 years.

But here's where shoulder dislocations differ from ACL injuries: return to play can happen as early as 2-3 weeks after injury for athletes who are pain-free, have symmetrical shoulder range of motion, and can perform sport-specific motions. Some athletes with recurrent dislocations who experience easy relocation, minimal pain, full range of motion, and protective strength may even return the same day.

The treatment approach depends on several factors:

Immediate management:

  • Attempted relocation on the field before muscle spasm develops

  • Neurovascular assessment before and after reduction

  • Immobilization and pain management after successful reduction

  • Post-reduction radiographs after first-time dislocation

Recovery protocol:

  • Sling use for 2-4 weeks for comfort (though current evidence doesn't mandate a specific duration)

  • Graduated rehabilitation focusing on passive and active range of motion

  • Physical therapy addressing joint range of motion, scapular control, rotator cuff strength, and sport-specific conditioning

Surgical considerations: Surgery should be considered for first-time dislocations in active patients under 25 due to the extremely high recurrence rate, or when there are complications like large bony defects.

Interestingly, research on high school athletes shows that 85% of those treated nonoperatively successfully returned to their sport and completed at least one full season without additional injury. Athletes with subluxations (partial dislocations) fared even better, with an 89% success rate compared to 26% for complete dislocations.

 

Ankle Sprains: The Most Common Culprit

Ankle sprains are the most common foot-ankle and sports-related injury for which people seek medical care. Four in every 10 first-time ankle sprains occur during sports participation. The good news? Most athletes bounce back quickly.!

High school athletes have a 75% chance of returning to sport within 3 days after a first-time , Grade I ankle sprain, and a 95% chance within 10 days. In college athletics, 44.4% of athletes returned to play in less than 24 hours. However, more severe Grade II and III sprains involving multiple ligaments can sideline athletes for more than 3 weeks.

The key to successful return involves addressing five critical domains — the PAASS framework:

  • Pain: Both during sport participation and over the last 24 hours

  • Ankle impairments: Range of motion, muscle strength, endurance, and power

  • Athlete perception: Confidence, reassurance, stability, and psychological readiness

  • Sensorimotor control: Proprioception and dynamic postural control/balance

  • Sport/functional performance: Hopping, jumping, agility, sport-specific drills, and ability to complete a full training session

Supervised exercise programs addressing strength, coordination, proprioception, and functional deficits lead to faster return to sports. Evidence also supports the use of compression stockings and anteroposterior ankle joint mobilization for quicker recovery.

General return-to-work and sport guidelines suggest:

  • Return to sedentary work: 2-6 weeks following injury

  • Return to physical occupations and sports: 6-8 weeks

These timelines should be adjusted based on injury severity, rehabilitation response, and specific task requirements. Working with a sports medicine clinician will be key for determining optimal readiness.

 

TOOLS FOR BUILDING CONFIDENCE

Resistance bands, balance pads and boards, and BFR cuffs are a few of the essential tools in rehabilitation. Resistance bands safely build strength, balance pads enhance coordination and stability, and BFR cuffs accelerate recovery through low-load training.

Below are our top 5 recommended products to use as a recovering athlete.

 
 

Click the image to shop on Amazon through our affiliate links and access possible discounts!

 
 

The Bottom Line

Physical clearance for return to play isn't one-size-fits-all. ACL injuries require the longest recovery with the most stringent criteria — minimum 9 months and 90% strength symmetry. Shoulder dislocations can allow quicker return (2-3 weeks) but carry high recurrence risk in young athletes. Ankle sprains typically resolve fastest, with most athletes back within days to weeks.

The common thread? Meeting objective physical criteria matters more than arbitrary timelines. Pain-free movement, symmetrical strength, full range of motion, and sport-specific performance capabilities aren't just checkboxes — they're your best insurance against reinjury.

In Part 2, we'll explore the mental side of return to play — because as we've learned, physical readiness is only half the battle.

 

References

Does Stretching Actually Work?

Stretching has been a go-to practice for athletes, fitness enthusiasts, and physical therapy patients alike. But what’s really happening inside your body when you stretch? More importantly, is stretching as beneficial as we’ve been told?

For years, the idea was simple: stretch to improve flexibility, prevent injuries, and enhance performance. However, modern research paints a more nuanced picture. While stretching does have benefits, how, when, and why you stretch matters. In this post, we’ll explore the science behind stretching, the differences between dynamic and static stretching, and how to make your stretching routine more effective.

What Happens at the Cellular Level?

When you stretch, your muscles don’t just "loosen up"—a series of complex physiological reactions occur at the cellular level.

1. Muscle Fibers and Fascia Adapt

Muscle fibers (sarcomeres) temporarily elongate during stretching, but lasting flexibility gains occur when connective tissues, like fascia, gradually adapt over time. This aligns with Davis’s law, which states that soft tissues remodel in response to consistent mechanical stress. Research also shows that fascia is dynamic and can adapt to mechanical forces, influencing long-term flexibility (Schleip et al., 2019).

2. Neuromuscular Inhibition (Stretch Reflex)

The stretch reflex protects muscles from overstretching by triggering a contraction when a muscle is rapidly lengthened. However, consistent stretching can reduce this reflex's excitability, allowing for greater flexibility. A study found that repeated stretching, especially when muscles remain relaxed, can attenuate stretch reflex activity, supporting the idea that long-term stretching helps muscles tolerate greater lengthening without resistance (Ogawa et al., 2022).

3. Increased Blood Flow and Tissue Elasticity

Stretching improves blood circulation, which brings oxygen and nutrients to the muscles. This can enhance recovery, reduce muscle stiffness, and even contribute to long-term joint health.

Has Science Proven That Stretching is Beneficial?

Yes and no. While stretching can improve flexibility, studies show that static stretching before exercise doesn’t significantly reduce injury risk or enhance performance (Behm et al., 2016). However, dynamic stretching and long-term flexibility training have been shown to improve range of motion, recovery, and even reduce chronic pain when done correctly (Oppert & Babault, 2018).

Dynamic vs. Static Stretching: How to Use Each Effectively

Not all stretching is created equal. The type of stretching you do should match your goal:

Dynamic Stretching:
Best Before Activity

Dynamic stretching involves active movements that take your joints through their full range of motion. Instead of holding a stretch, you move fluidly through it—mimicking the movements you’re about to perform.

Benefits:

  • Increases blood flow and muscle temperature

  • Activates the nervous system for movement

  • Improves range of motion without reducing muscle power

EXAMPLES:

  • Leg Swings – Swing your leg forward and backward to activate hip flexors and hamstrings.

  • Lunges with a Twist – Engage core, hips, and spine before running or sports.

  • Arm Circles – Increase mobility in the shoulders before upper-body activities.

Bottom Line: Use dynamic stretching before workouts to prepare your muscles for activity without reducing power output.

Static Stretching:
Best After Activity

Static stretching involves holding a position for an extended period (15–60 seconds), allowing muscles to relax and lengthen.

Benefits:

  • Improves long-term flexibility

  • Helps muscles recover and reduces post-exercise stiffness

  • Promotes relaxation and stress relief

EXAMPLES:

  • Hamstring Stretch – While lying on your back, use a strap to anchor around your foot and pull your leg up towards the ceiling, feeling a stretch in the back of your leg

  • Chest Opener – While sitting, clasp hands behind your head and open your chest to counteract hunching, opening your elbows out and away from you

  • Quad Stretch – While standing, grab one ankle behind you to stretch the front of your thigh.

Bottom Line: Use static stretching after workouts or as part of a flexibility routine to improve long-term mobility.

When to Stretch
(And When Not To)

When You Should Stretch:

Before a workout? – Yes, but only dynamic stretching.
After a workout? – Yes, static stretching can aid in recovery.
To improve flexibility? – Yes, but hold stretches for 15-60 seconds & perform them regularly.
To address muscle imbalances? – Yes, targeted stretching can help correct asymmetries.

When You Should Avoid Stretching:

When muscles are cold – Jumping into static stretching without warming up can lead to injury.
If you're experiencing sharp pain – Stretching shouldn’t cause pain; if it does, you may have an underlying issue.
If you suspect a sprain or strain – these types of injuries involve the tearing of ligaments or muscles/tendons, respectively (sometimes these tears are minimal). If there’s any torn tissue, stretching is not advised
When you have a history of dislocation or subluxation – joints that are likely to pop out of place are not suited for stretching

TOOLS FOR OPTIMIZING YOUR STRETCHING ROUTINE

A stretching strap promotes better alignment and controlled muscle lengthening, while a yoga mat provides joint support and stability—both enhancing safety and effectiveness through improved biomechanics.

BUY ON AMAZON
BUY ON AMAZON
 

Addressing Muscle Imbalances: Focusing on the Tighter Side

If you notice one side of your body is significantly tighter than the other, this could indicate:

  • An imbalance in muscle strength

  • A previous injury that caused compensatory patterns

  • Postural habits affecting mobility

How to Fix It:

  • During warmups, spend extra time dynamically stretching the tighter side.

  • During cooldowns, hold static stretches longer on the less flexible side.

  • If asymmetry persists, consider working with a physical therapist to address underlying issues.

Conclusion: Smarter Stretching for Better Movement

Stretching isn’t just about flexibility—it’s about training your nervous system and connective tissues to function optimally. Keep in mind that your body needs time to adapt to a new stretching routine, so start slow and don’t stretch more than once a day.

Here’s what to remember:

Dynamic stretching before workouts prepares muscles for movement.
Static stretching after workouts improves flexibility and recovery.
Stretching should be intentional—focusing on imbalances and avoiding overdoing it.
Flexibility is a long-term process—consistency is key.

Rather than mindlessly holding stretches, use stretching as a tool to enhance movement, prevent injury, and improve overall mobility. If you’re struggling with flexibility issues, a structured stretching routine (or a visit to a physical therapist) could make all the difference.

References

  • Schleip, R., Gabbiani, G., Wilke, J., Naylor, I. L., Hinz, B., Zorn, A., Jäger, H., & Klingler, W. (2019). Fascia is able to actively contract and may thereby influence musculoskeletal dynamics: A histochemical and mechanographic investigation. Frontiers in Physiology, 10, 336.

  • Ogawa, Y., Hasegawa, N., Nakazawa, K., Akai, M., & Murayama, M. (2022). Effect of repeated fast stretches on stretch reflex excitability in individuals post-stroke. Frontiers in Neurology, 13, 764650.

  • Behm, D. G., Blazevich, A. J., Kay, A. D., & McHugh, M. (2016). Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Applied Physiology, Nutrition, and Metabolism, 41(1), 1–11.

  • Opplert, J., & Babault, N. (2018). Acute effects of dynamic stretching on muscle flexibility and performance: An analysis of the current literature. Sports Medicine, 48(2), 299–325.

The Benefits of Kinesiology Taping

Kinesiology taping, sometimes called “KT” or “taping”, has emerged as a popular technique in sports medicine and rehabilitation, gaining recognition for its ability to support injury recovery and decrease pain. While the concept of elastic taping is not new, its application has evolved significantly. Let’s dive  into what therapeutic elastic taping is, how it works, and its benefits.

What is Kinesiology taping?

Kinesiology taping uses a flexible, stretchy tape designed to mimic the elasticity of skin. The tape is applied to the skin in various patterns and tensions, depending on the condition being treated. Unlike traditional athletic tape, which is often intentionally rigid and restrictive, kinesiology tape allows for a full range of motion, thereby supporting and stabilizing muscles and joints without restricting movement.

How Does It Work?

The primary theories behind the effectiveness of kinesiology taping involve its impact on the skin and underlying tissues. When applied correctly, the tape can lift the skin slightly, creating more space between the skin and the underlying tissues. This lifting effect is thought to improve lymphatic drainage, reduce pressure on pain receptors, and facilitate the body’s natural healing processes.

Additionally, kinesiology taping has been observed to provide proprioceptive feedback, which can help the body to correct movement patterns and improve posture. Applying portions of the tape with increased tension in specific patterns can gently influence the way a person stands or moves. This feedback may help athletes and individuals with musculoskeletal injuries to perform better and recover more effectively.

Benefits of Kinesiology taping

  1. Pain Relief: One of the most commonly reported benefits of kinesiology taping is pain relief. The lifting effect of the tape can help to alleviate pressure on pain receptors and reduce discomfort associated with various injuries and conditions.

  2. Improved Function: Kinesiology taping can enhance functional performance by supporting weak or injured muscles and joints. This support helps in maintaining proper alignment and reducing strain during physical activities.

  3. Enhanced Circulation: The tape’s effect on skin and underlying tissues is thought to improve blood flow and lymphatic drainage. This can contribute to reduced swelling and quicker recovery times.

  4. Injury Prevention: By stabilizing muscles and joints, kinesiology taping may help to prevent injuries during physical activities. It can also support rehabilitation by ensuring that muscles are properly engaged and protected.

Evidence and Efficacy

The scientific evidence supporting kinesiology taping is mixed. Some studies suggest that kinesiology taping can be beneficial for specific conditions such as musculoskeletal pain, joint instability, and post-surgical recovery. For instance, research published in the Orthopaedic Journal at Harvard Medical School (Bhashyam, et al 2018) found that kinesiology taping could reduce pain and improve function in individuals with shoulder impingement when used in conjunction with physical therapy. Another study in the Journal of Sports Rehabilitation (Kirmizigil, et al 2019)  indicated that it might aid in decreasing muscle soreness and improve post-exercise performance.

However, other studies question the clinical significance of these benefits. A review in the American Journal of Physical Medicine & Rehabilitation (Ye, et al 2020) concluded that while kinesiology taping might have some short-term benefits, its effectiveness compared to other treatment methods is still uncertain.

Application Techniques

Proper application of kinesiology tape is crucial for its effectiveness. The tape can be applied in various ways depending on the desired outcome. For instance, a "fan" technique might be used to address swelling, while a "strip" technique can target muscle support. It is advisable to seek guidance from a trained healthcare professional to ensure correct application and maximize benefits.


Kinesiology taping is a versatile tool in the field of rehabilitation and sports medicine, offering potential benefits for pain relief, functional improvement, and injury prevention. While the evidence supporting its efficacy is still evolving, many individuals report positive outcomes. Additionally, kinesiology tape is an inexpensive and low-risk modality. Exploring therapeutic elastic taping could be a valuable step in your injury recovery journey and may provide the support and relief you’re looking for in your journey towards becoming a more robust, durable athlete. 

Interested? All three of our clinicians are certified by Rocktape! Talk to your provider during your next appointment to see how kinesiology tape could supplement your recovery, or reach out to schedule a taping appointment.